Application Guide

ower Equations

This note brings together a number of equations and conversion factors that are useful when applying a power supply.

General

Voltage & Current

$$\begin{aligned} &\mathsf{V}_\mathsf{P} &= \left(\frac{1}{0.707}\right) \; \mathsf{x} \; \mathsf{V}_\mathsf{RMS} \\ &\mathsf{V}_\mathsf{P} &= \sqrt{2} \mathsf{V}_\mathsf{RMS} = \; 1.414 \; \mathsf{V}_\mathsf{RMS} \\ &\mathsf{V}_\mathsf{PP} &= \; 2 \mathsf{V}_\mathsf{P} \\ &\mathsf{V}_\mathsf{RMS} &= \sqrt{0.5 \; \mathsf{V}_\mathsf{P}} \approx \; 0.707 \; \mathsf{V}_\mathsf{P} \\ &\mathsf{V}_\mathsf{AVG} &= \left(\frac{2}{\Pi}\right) \; \mathsf{V}_\mathsf{P} \approx \; 0.637 \; \mathsf{V}_\mathsf{P} \\ &\mathsf{I}_\mathsf{P} &= \sqrt{2} \mathsf{I}_\mathsf{RMS} \approx \; 1.414 \; \mathsf{I}_\mathsf{RMS} \\ &\mathsf{I}_\mathsf{PP} &= \; 2 \mathsf{I}_\mathsf{P} \\ &\mathsf{I}_\mathsf{RMS} &= \sqrt{0.5 \; \mathsf{I}_\mathsf{P}} \approx \; 0.707 \; \mathsf{I}_\mathsf{P} \\ &\mathsf{I}_\mathsf{AVG} &= \left(\frac{2}{\Pi}\right) \; \mathsf{I}_\mathsf{P} \; \approx \; 0.637 \; \mathsf{I}_\mathsf{P} \end{aligned}$$

Where: $V_p = Peak Voltage$

V_{PP} = Peak to Peak Voltage

V_{ΔVG} = Average Voltage

V_{rms} = RMS (root mean square) Voltage

I_p= Peak Curent

Ipp = Peak to Peak Current

I_{AVG} = Average Current

I_{RMS} = RMS (root mean square) Current

Frequency & Time

Duty Cycle: The ratio of "on" time to "off" time of the semiconductor switch (in PWM systems) or clock signal.

$$\mathsf{F} = \left(\frac{1}{\mathsf{T}}\right)$$

$$T = \left(\frac{1}{F}\right)$$

Where: F = Frequency

T = Time

Ohms Law/Power Wheel

Reactance

$$X_{c} = (\frac{1}{2\pi FC})$$

$$X_L = 2\pi FL$$

Where: $X_c = \text{Reactance}$, in ohms, of a capacitance

Reactance, in ohms, of an inductance

Frequency in Hertz)

Capacitance in Farads

Inductance in Henrys

Decibal

Decibel (dB): A decibel (dB) is the fundamental measurement unit used in EMI measurements.

$$dB = 10 \text{ Log}_{10} \left(\frac{P_{OUT}}{P_{IN}} \right)$$

$$dB = 20 \text{ Log}_{10} \left(\frac{V_{OUT}}{V_{IN}} \right)$$

$$PR = 10^{-(dB/10)}$$

$$VR = 10^{(dB/20)}$$

Where: $P_{OUT} = Output Power$

 P_{IN}^{OUT} = Input Power V_{OUT} = Output Voltage

V_{IN} = Input Voltage

PR = Power Ratio

VR = Voltage Ratio (Current ratio is

the same)

Power Equations

Go Direct For: Product Performance

At MicroPower Direct we have the product you need at the best price and right performance level. With nearly 2,000 standard DC/DC converter models and thousands of standard enclosed & open frame AC/DC power supplies, one is sure to offer the right solution for your application. New product families include:

A800ERW!

Low Cost 8W DIP

This "Budget Saver" offers miniature size, high performance & low cost. Features include:

- 8W Output Power 1.5 kV I/O Isolation
- 2:1 Input Range
- Miniature DIP Case
- Standard Pin-Outs
 Single /Dual Outputs
 - Lowest Cost

AC/DC Power Supplies!

MPD offers a full line of enclosed & open frame AC/DC power supplies. Ranging from 10W to 300W, these compact supplies meet international

standards while offering a wide selection of models and low cost. Features include:

- 10W to 300W
- 1 to 4 Outputs
- Universal AC Input Meet EN60950
- Meet EN55022 B Compact Size
 - Low Cost

B3000RW!

30W in 1"x 2" Case MPD offers a wide variety of low cost standard DC/DC converters. These units offer many high performance features including:

- 30W Output Power 2:1 Input
- 1" x 2" x 0.4" Case 1.5 kV I/O Isolation
- RoHS Compliant
 Meet EN60950
 - Industry Standard Pin-Outs

MPD offers one of the widest selections of standard AC/DC and DC/DC power supplies in the industry. All are offered at the lowest cost possible.

When you need Power Supplies? Go Direct!

www.micropowerdirect.com

See Us On The WEB!!

Specifications

Efficiency

Efficiency (n): The ratio of total output power to input power. Typically expressed as a percentage, efficiency is derived by the equation:

Efficiency (%) =
$$\frac{P_{\text{out}}}{P_{\text{IN}}}$$
 X 100

Where: P_{OUT} = Output Power P_{IN} = Input Power

Power

Average Power: In an ac circuit, the average value of ac power. For resistive circuits, this equals the square of the rms current times the circuit resistance, as given by:

$$P_{A} = (I_{RMS})^{2}R$$

Where: $I_{RMS} = rms$ value of the circuit current R = Circuit resistance in ohms

True Power: The actual power consumed by an ac circuit. It is given by:

$$P_T = V_{RMS} \times I_{RMS} \cos(\phi)$$

= rms value of the circuit current Where: V_{RMS} = rms value of the circuit voltage

Power Factor: For an ac input power supply, the ratio of true input power to apparent input power.

$$PF = COS \theta$$

$$PF = (\frac{P_{T}}{P_{App}})$$

Thermal

Internal Power Dissipation: Power dissipated as heat within the power supply during normal operation.

$$P_D = P_{IN} - P_{OUT}$$

$$P_D = (\frac{P_{OUT}}{\eta}) - P_{OUT}$$

= Internal power dissipated Where: P_D

= Input Power P_{out} = Output Power = Efficiency

Thermal Resistance: (θ) A measure of the opposition a material will have to the flow of heat. Used to calculate the temperature drop that occurs when power flows through a material or across the junction of two materials.

$$\theta \text{ (°C/W)} = \frac{\Delta T}{P_D}$$

Where: L = Length of material

K = Thermal conductivity of material A = Cross sectional area of material

 ΔT = Temp drop across material

P_D = Power flowing through material

Regulation

Line **Regulation (%)**
$$\frac{\text{%V}_{L}\Delta}{\text{%V}_{IN}\Delta}$$
 x 100

Load Regulation (%)
$$\frac{\text{NLV}_{\text{out}} - \text{FLV}_{\text{out}}}{\text{FLV}_{\text{out}}} \times 100$$

Where: V = Load Voltage

> = Input Voltage (Line) NLV_{OUT} = Load Voltage @ No Load Load Voltage @ Full Load FLV_{OUT} =

Conversion Factors

Common Conversions

CFM LFM Area

CFM Area x LFM

(°F-32) °C

٥F 1.8 x °C + 32

°F + 459.67 °K 1.8

٥K °C + 273.15

1 Inch = 25.4 mm

1 mm 0.03937 Inches

= 39.7 Inches 1 m

1 Ampere-Hour = 3,600 Coulombs

1 IB = 453.4924 Grams

= 28.3495 Grams 1 Ounce

1 Gram = 0.0357 Ounces

1 kGram = 2.205 Pounds

1 Pound = 0.4523 kgrams

1 Joule/Second 1 Watt

1 BTU/Sec 1,054.8 Joules/Sec

1 Joule = 0.000948 BTU